
Rule formats for bounded nondeterminism in
structural operational semantics?

Luca Aceto, Álvaro Garćıa-Pérez, and Anna Ingólfsdóttir

ICE-TCS, School of Computer Science, Reykjav́ık University,
Menntavegur 1, IS-101, Reykjav́ık, Iceland.

Abstract We present rule formats for structural operational semantics
that guarantee that the associated labelled transition system has each of
the three following finiteness properties: finite branching, initials finite-
ness and image finiteness.

Keywords: structural operational semantics, labelled transition sys-
tems, rule formats, bounded nondeterminism

1 Introduction

Structural operational semantics (SOS) [25, 27] is a widely used formalism for
defining the formal semantics of computer programs and for proving properties
of the corresponding programming languages. In the SOS formalism a transition
system specification (TSS) [13], which consists of a signature together with a set
of inference rules, specifies a labelled transition system (LTS) [16] whose states
(i.e., processes) are closed terms over the signature and whose transitions are
those that can be proved using the inference rules.

Rule formats [2, 21] are syntactically checkable restrictions on the inference
rules of a TSS that guarantee some useful property of the associated LTS. The
properties ensured by such rule formats vary from compositionality of behavi-
oural equivalences [7,13,14,30] to finiteness of the number of outgoing transitions
from a given state [6,9,32]. This paper focuses on the finiteness property, which is
referred to as bounded nondeterminism in [12]. Broadly, bounded nondetermin-
ism is taken as a synonym of finite branching [9]. Finite branching breaks down
into the more elementary properties of initials finiteness and image finiteness [1]
(see Section 2 for formal definitions).

Vaandrager [32] introduced the notion of bounded TSS and proved that a
bounded TSS in de Simone format [30] induces an LTS that is finite branch-
ing. Bloom [6] used a notion of bounded TSS reminiscent of that of Vaandrager
and showed that a bounded TSS in his higher-order-GSOS format [6] induces an
LTS that is finite branching. Finally, Fokkink and Vu [9] used yet another notion
of bounded TSS and introduced a less restrictive rule format that they called

? This research has been supported by the project ‘Nominal Structural Operational
Semantics’ (nr. 141558-051) of the Icelandic Research Fund.

‘bounded nondeterminism format’. They adapted the notion of strict stratific-
ation from [14] and showed that a bounded TSS in bounded nondeterminism
format that has a strict stratification induces an LTS that is finite branching.

In this paper we take Fokkink and Vu’s programme further and present rule
formats for initials finiteness and for image finiteness. For initials finiteness we re-
lax the requirement that the η-types of [9] be finitely inhabited and we introduce
the initials finite format, which replaces the bounded nondeterminism format
of [9]. For image finiteness, we introduce the notion of θ-type. Unlike the η-types
of [9], which carry information about the sources of positive premisses in rules,
the θ-types also keep track of the actions that label positive premisses. Moreover,
we introduce a uniformity requirement on the targets of positive premisses, which
strengthens the requirement in [9] that the variables in a rule have to be used
uniformly. We introduce the accompanying notions of initials-bounded TSS and
image-bounded TSS and show the following results.

– An initials-bounded TSS in initials finite format that has a strict stratifica-
tion induces an LTS that is initials finite (Theorem 2).

– An image-bounded TSS in bounded nondeterminism format that has a strict
stratification induces an LTS that is image finite (Theorem 3).

The results and the techniques we employ in this paper touch upon some of the
main topics in the research of Flemming Nielson and Hanne Riis Nielson over the
years, namely operational semantics [23], static analysis [22] and type systems [3].
This study contributes to the development of a general theory of operational
semantics based on rule formats, which may be seen as providing some statically
checkable, largely syntactic, conditions guaranteeing that the specified languages
afford some semantic properties of interest. The various notions of ‘types’ that we
use in the definition of the rule formats discussed in this paper allow us to classify
the inference rules in a language specification. Informally, types contribute to
guaranteeing that composite processes have the finiteness property of interest,
if their components do so.

The rest of the paper is organised as follows. Section 2 revisits preliminaries
and basic notions from [9] and adapts some of its definitions. Definition 10 form-
alises the notion of uniform TSS and Proposition 2 shows that a closed term p
unifies only with finitely many rules in a uniform TSS. Section 3 provides an
alternative proof of Theorem 1 in [9] that removes the reductio ad absurdum
argument that is used there. Theorem 1 shows that a bounded TSS in bounded
nondeterminism format that has a strict stratification induces an LTS that is
finite branching. The proof of Theorem 1 here is direct and fully constructive.
Section 4 discusses the variable flow in a transition rule and Definition 18 intro-
duces the initials finite format, which requires that each variable in the source of
a positive premiss occur also in the source of the rule. Definition 20 introduces
the notion of initials-bounded TSS, which relaxes the η-types of [9] by requiring
that the actions of an η-type are finite, instead of requiring the η-type to be fi-
nitely inhabited. Theorem 2 shows that an initials-bounded TSS in initials finite
format that has a strict stratification induces an LTS that is initials finite. Sec-
tion 5 discusses the logical content of the η-types under the prism of intuitionistic

2

logic [19], and shows that the η-types realise the intuitionistic interpretation of
the property of initials finiteness. Definition 21 introduces the θ-types, which
are analogous to the η-types in that they realise the intuitionistic interpretation
of the property of image finiteness. Definition 22 introduces uniformity in the
targets of positive premisses, which prevents the θ-types to be infinitely many
as a result of using infinitely many different names for a variable occurring in
the target of some positive premiss, and Definition 23 introduces the notion of
image-bounded TSS. Theorem 3 shows that an image-bounded TSS in bounded
nondeterminism format that has a strict stratification induces an LTS that is
image finite. Section 6 discusses avenues for future work and concludes.

2 Preliminaries

We give an overview of the structural operational semantics formalism (SOS for
short). We follow the notation and the presentation in [9].

For a set S, we write P(S) for the collection of all the subsets of S, and
Pω(S) for the collection of all the finite subsets of S.

Definition 1 (Signature and Term). We assume a countably infinite set of
variables V , ranged over by x, y, z. A signature Σ is a set of function symbols,
disjoint from V , together with an arity map that assigns a natural number to
each function symbol. We use f to range over Σ. Function symbols of arity zero,
which may be ranged over by c, d, are called constants. Function symbols of arity
one and two are called unary and binary functions respectively.

The set T(Σ) of (open) terms over a signature Σ, ranged over by t, u, v, is
the least set such that:

1. each variable is a term, and
2. if f is a function symbol of arity n and t1, . . . , tn are terms, then f(t1, . . . , tn)

is a term.

The function var : T(Σ)→ Pω(V) delivers, for a term t, the set of variables
that occur in t. A term t is closed iff var(t) = ∅. The set of closed terms over Σ,
ranged over by p, q, is denoted by T (Σ).

Definition 2 (Formula). We consider a set of actions A, ranged over by a, b
(and c when no confusion arises with the constants). The set of positive formulae
over signature Σ and actions A is the set of triples (t, a, t′) ∈ T(Σ)×A×T(Σ).

We use the more suggestive notation t
a−→ t′ in lieu of (t, a, t′). The set of

negative formulae over signature Σ and actions A is the set of pairs (t, a) ∈
T(Σ)×A. We use the more suggestive notation t 6 b−→ in lieu of (t, b).

Definition 3 (Substitution). A substitution is a partial map σ : V → T(Σ).
The substitutions are ranged over by σ, τ . A substitution is closed if it maps
variables to closed terms. A substitution extends to a map from terms to terms
in the usual way, i.e., the term σ(t) is obtained by replacing the occurrences in

3

t of each variable x in the domain of σ by σ(x). When applying substitutions
σ and τ successively, we may abbreviate τ(σ(t)) to τσ(t). We say term u is a
substitution instance of t iff there exists a substitution σ such that σ(t) = u.

In what follows, we shall sometimes use the notation {xi 7→ ti | i ∈ I}, where
I is an an index set and the xi’s are pairwise distinct variables, to denote the
substitution that maps each xi to the term ti (i ∈ I).

A substitution σ extends to formulae t
a−→ t′ and u 6 b−→ in the usual way,

by applying the substitution to the term components of the formulae, i.e.,

σ(t)
a−→ σ(t′) and σ(u) 6 b−→ respectively. The notion of substitution instance

extends similarly.

Definition 4 (Labelled transition system). Let Σ be a signature and A a
set of actions. A labelled transition system (LTS for short) is a pair (T (Σ),→)
where T (Σ) is the set of processes, i.e., closed terms, and −→⊆ T (Σ)×A×T (Σ)

is the set of transitions, i.e., closed positive formulae. We say that p
a−→ p′ is a

transition of the LTS iff (p, a, p′) ∈−→.

Labelled transition systems [16] are a fundamental model of computation and
are often used to describe the operational semantics of programming and spe-
cification languages—see, for instance, [20,26,27,29]. Transition system specific-
ations, which we now proceed to define, describe the LTS giving the semantics of
a language by means of a signature (namely, the collection of term constructors
offered by the language) and a set of inference rules that can be used to prove
the valid transitions between terms in the language.

Definition 5 (Transition system specification). Let Σ be a signature and
A a set of actions. A transition rule (a rule, for short) ρ is of the form

H

t
a−→ t′

(abbreviated as H/t
a−→ t′) where H is a set of positive premisses of the form

u
b−→ u′ and negative premisses of the form v 6 c−→, and t

a−→ t′ is the conclusion
of the rule (with t, t′, u, u′, v ∈ T(Σ) and a, b, c ∈ A). We say t is the source, a
is the action, and t′ is the target of ρ. We say ρ is an axiom iff ρ has an empty
set of premisses, i.e., H = ∅.

A transition system specification (TSS for short) is a set of transition rules.

A substitution map extends to a rule ρ by applying the substitution to the
formulae in ρ. The notion of substitution instance extends similarly to rules.

Definition 6 (Unify with a rule). Let R be a TSS. We say that transition

p
a−→ p′ unifies with rule ρ ∈ R iff ρ has conclusion t

a−→ t′ and p
a−→ p′ is a

substitution instance of t
a−→ t′.

4

Definition 7 (Proof tree). Let R be a TSS without negative premisses. A

proof tree in R of a transition p
a−→ p′ is an upwardly branching tree without

paths of infinite length whose nodes are labelled by transitions such that

1. the root is labelled by p
a−→ p′, and

2. if K is the set of labels of the nodes directly above a node with label q
b−→ q′,

then K/q
b−→ q′ is a substitution instance of some rule H/t

b−→ t′ ∈ R.

We say that p
a−→ p′ is provable in R iff p

a−→ p′ has a proof tree in R.

The set of provable transitions in R is the least set of transitions that satisfies
the rules in R. Notice that if p

a−→ p′ unifies with an axiom (i.e., a rule of the

form ∅/t a−→ t′) then, trivially, p
a−→ p′ has a proof tree in R which consists of

a root node labelled by p
a−→ p′.

A TSS without negative premisses induces an LTS in a straightforward way.

Definition 8 (TSS induces LTS). Let R be a TSS without negative premisses
and T an LTS. R induces T (or T is associated with R) iff the set of transitions
of T is the set of provable transitions in R.

The phrases

1. p
a−→ p′ is provable in R,

2. p
a−→ p′ is a transition of T , and

3. p can perform an a-transition to p′ in T

are synonyms. For brevity, we may omit the R and/or the T when they are clear
from the context.

In [28], Przymusinsky introduced three-valued stable models, which can be
used to associate an LTS to a TSS with negative premisses. Each TSS has a
least three-valued stable model, which coincides with the well-founded semantics
from [11]. We consider the set of sentences that are certainly true in the least
three-valued stable model, which, for a TSS without negative premisses, coincides
with the set of provable transitions in Definition 8. As Fokkink and Vu noticed
in [9], if R is a TSS and R′ is obtained by removing all the negative premisses
from the rules in R, then the LTS associated with R is included in the LTS
associated with R′. In particular, if the LTS associated with R′ has any of the
finiteness properties considered in this paper, then the LTS associated with R
has the property too. We follow [9] and ignore the negative premisses in the
TSSs. None of the rule formats that we introduce here impose any restrictions
on negative premisses.

The notion of uniform TSS stems from [9]. We introduce the notion of struc-
ture of a term, and provide a formal definition of uniform TSS, to which we refer
as uniform TSS in the sources because the focus is on the sources of the rules.

Definition 9 (Structure of a term). Let R be a TSS. The terms t and u
have the same structure iff

5

1. t = x and u = y, where x and y are variables, or
2. t = f(t1, . . . , tn) and u = f(u1, . . . , un), where f is a function symbol of arity

n ≥ 0, and the terms ti and ui have the same structure for each 1 ≤ i ≤ n.

Intuitively, two terms t and u have the same structure iff their syntax trees differ
only in the name of the variables. For example f(x, y) and f(x, x) have the same
structure. Two closed terms have the same structure iff they are the same term.

Definition 10 (Uniform in the sources). A TSS R is uniform in the sources
iff t = u holds whenever t and u have the same structure and are sources of any
two rules in R.

In Section 5 we will introduce the analogous notion of uniform TSS in the targets
of positive premisses, in which the focus is on the targets of positive premisses.
When no confusion arises, we may abbreviate and say ‘uniform TSS’ for ‘uniform
TSS in the sources’.

The rationale behind uniformity in [9] is to enforce that in a uniform TSS,
each closed term is a substitution instance of the sources of at most finitely
many transition rules. In order to show this property, we introduce the notion
of partial term and the less-defined-than relation.

Definition 11 (Partial term). The set T⊥(Σ) of partial terms over a signa-
ture Σ, ranged over by r, s, is the set of terms that results by extending Σ with
the constant symbol ⊥. The symbol ⊥, which stands for ‘undefined’, is different
from the other symbols in Σ.

Notice that T (Σ) ⊂ T(Σ) ⊂ T⊥(Σ). The notion of structure of a term from
Definition 9 is extended to partial terms in a straightforward way by considering
the symbol ⊥ as a variable. For instance, f(x, y) has the same structure as
f(⊥, z).

Definition 12 (Less-defined-than relation). The relation v (which we refer
to as the less-or-equally-defined-than relation) is the least binary relation over
partial terms such that

1. ⊥ v r for each partial term r,
2. x v x for each variable x, and
3. f(s1, . . . , sn) v f(r1, . . . , rn) where f is a function symbol of arity n ≥ 0 iff

si v ri for each 1 ≤ i ≤ n.

We say s is an approximant of r iff s v r.
The less-defined-than relation @ is the binary relation over partial terms

defined thus: s @ r iff s v r and s 6= r.

It is easy to see that v induces a partial order and @ induces a strict partial
order over partial terms.

Proposition 1. The less-defined-than relation, @, is a well-founded relation.

6

Proof. We prove that there exists no infinite decreasing chain r1 A r2 A To
this end, we first define the size of a partial term r as follows:

1. the size of ⊥ is zero,
2. the size of a variable is one, and
3. the size of f(r1, . . . , rn) with f a function symbol of arity n ≥ 0 is one plus

the sum of the sizes of the ri’s with 1 ≤ i ≤ n.

Let r and s be partial terms. If s @ r then s is obtained by replacing by ⊥ one
or more maximally disjoint subterms of r that are different from ⊥, and hence
the size of s is strictly smaller than that of r. Since the size of every partial term
is finite, each decreasing chain is also finite and we are done. ut

Proposition 2. Let R be a uniform TSS. For each closed term p the set of pairs
(t, σ) with σ : var(t)→ T (Σ) such that σ(t) = p and t is the source of some rule
in R is finite.

Proof. We prove the generalised proposition:

Let R be a uniform TSS. For each pair (p, r) where p is a closed term
and r is an approximant of p (i.e., r v p), the set of pairs (t, σ) with
σ : var(t) → T (Σ) such that there exists r′ an approximant of r (i.e.,
r′ v r) with the same structure as t, and σ(t) = p and t is the source of
some rule in R, is finite.

The original proposition follows from the generalised proposition by fixing r = p.
We construct the set S of pairs (t, σ) that meet the conditions of the generalised
proposition and show that S is finite. We proceed by well-founded induction on
the set of approximants of r ordered by the less-defined-than relation (@).

We first check that the generalised proposition holds for the @-minimal par-
tial terms in the set of approximants of r. The only such partial term is r0 = ⊥.
There exists only one r′0 an approximant of r0 (i.e., r′0 = ⊥ v ⊥ = r0) and
the only terms that have the same structure as r′0 are the variables. Since R is
uniform, all the rules whose source is a variable (if there are any) have the same
variable x as source. If there exist no rules whose source is a variable, then the
set we are looking for is the empty set. Otherwise, the set we are looking for is
S = {(x, {x 7→ p})}. Both sets are finite.

Now we check that the generalised proposition holds for an arbitrary partial
term ra 6= ⊥ in the set of approximants of r. Notice that the partial term ra
is such that ra v r v p. By the induction hypothesis, for every rx such that
rx @ ra, the set Sx of pairs (t, σ) such that there exists r′x an approximant of rx
(i.e., r′x v rx) with the same structure as t, and σ(t) = p and t is the source of
some rule in R, is finite. Since R is uniform, all the rules whose source has the
same structure as r′x (if there are any) have the same source u. Since r′x @ ra,
then r′x is obtained by replacing by ⊥ one or more maximally disjoint subterms
of ra that are different from ⊥. We let xj (with j ranging over some index set J)
be the variables that occur in u in the positions corresponding to the occurrences
of ⊥ in r′x. (Notice that no other variables could occur in u, since u has the same

7

structure as r′x, and r′x @ p.) We let tj be the terms such that p results from
replacing respectively the xj by the tj in u. If there exist no rules with source
u, then the set we are looking for is S = Sx. Otherwise, the set we are looking
for is S = Sx ∪ {(u, {xj 7→ tj | j ∈ J})}. Both sets are finite. ut

The next example shows that Proposition 2 does not hold for TSSs that are
not uniform.

Example 1. Let Σ consist of a constant c and assume A = {a}. Let the xi with
i ∈ N be infinitely many distinct variables. Consider the TSS with rules

xi
a−→ c

, i ∈ N.

All the xi in the instantiations of the rule template above have the same struc-
ture, but xj 6= xk for j, k ∈ N and j 6= k. Therefore, the TSS is not uniform.
Notice that for c there exist infinitely many pairs (xi, σi) (with i ∈ N and
σi = {xi 7→ c}) such that σi(xi) = c.

We focus on the properties of finite branching, initials finiteness, and image
finiteness [1], which we define next.

Definition 13 (Bounded nondeterminism). Let T be an LTS and p a closed
term in T . We say

1. p is finite branching iff the set {(a, p′) | p a−→ p′} is finite,

2. p is initials finite iff the set {a | ∃p′ s.t. p
a−→ p′} is finite, and

3. p is image finite iff for every action a, the set {p′ | p a−→ p′} is finite.

An LTS T is finite branching (resp. initials finite and image finite) iff every
closed term in T is finite branching (resp. initials finite and image finite).

We call {a | ∃p′ s.t. p
a−→ p′} the set of initials of p. We call {p′ | p a−→ p′}

the set of images of p for action a.

3 Finite branching

The rule format in [9], which restricts a TSS to be bounded, to be in bounded
nondeterminism format, and to have a strict stratification, ensures that the
associated LTS is finite branching. Intuitively, the restrictions such a format
places on the allowed rules ensure that, for each closed term p,

1. the rules in the TSS do not allow one to simulate ‘unguarded recursion’ for
p,

2. only finitely many rules can be employed to derive transitions from p, and

3. each rule can only be used to infer finitely many transitions from p.

8

The third property is checkable for each rule in isolation and is embodied in the
requirement that the TSS be in bounded nondeterminism format (see Defini-
tion 16 to follow). On the other hand, the first and the second properties are
‘global’ and need to be checked for sets of rules. The existence of a strict stratific-
ation (see Definition 17) enforces the first property, while the second is guaran-
teed by the requirement that the TSS be bounded (see Definition 15 below). In
order to define the notion of bounded TSS, Fokkink and Vu classify the transition
rules in a TSS according to their so-called η-types. Intuitively, rules having the
same η-type are those that could potentially be used to derive transitions from
a closed term p that unifies with the source of the rules. The requirement that
the TSS be uniform and that the η-types be finitely inhabited ensures therefore
that only finitely many rules can be employed to derive transitions from p.

We now adapt the definition of η-types in [9], on which the notion of bounded
TSS is based, and recall the bounded nondeterminism format and the notion of
strict stratification in [9].

We let η : T(Σ) → P(T(Σ)) be the maps that parametrise the η-types of
Definition 14 to follow. The maps η deliver, for a given term t, a predefined set
of sources of positive premisses in rules that have source t. We say that η(t) is
the support of the sources for source t.1

Definition 14 (η-type). Let R be a TSS, ρ ∈ R a rule with source t and

positive premisses {ti
ai−→ t′i | i ∈ I}, and η a map with type T(Σ)→ P(T(Σ)).

We define ψ : η(t) → P(A) as the map that delivers, for each term u in the
support of the sources for t, i.e., u ∈ η(t), the actions of the positive premisses
of ρ with source u. More formally,

ψ(u) = {ai | i ∈ I ∧ ti = u}.

The tuple 〈t, ψ〉 is said to be the η-type of rule ρ.

Differently from [9], our definition of η-type does not require that each set in the
codomain of ψ be finite. This requirement is not necessary for the rule format
to ensure finite branching, as we explain in Remark 1 to Theorem 1.

The η-types distinguish rules based on their source and on the set of actions
of their positive premisses whose source belongs to the predefined set specified
by the map η. For instance, all the rules without positive premisses that have
the same source belong to the same η-type, regardless of their action and target.

Intuitively, as mentioned above, rules that have the same η-type might all
be used to derive transitions from a closed instantiation of their source. As the
following example indicates, the presence of infinitely many rules with the same
η-type might yield infinite branching.

Example 2. Let A be an infinite set of actions and Σ = {c}. Consider the TSS

c
a−→ c

, a ∈ A.

1 We beg the reader to bear with us in the repetition of ‘sources’ and ‘source’ in
sentences like the above. The ‘sources’ refers to the positive premisses and the ‘source’
to the conclusion of the rule.

9

All the infinitely many instantiations of the rule template above have η-type
〈c, ψ〉, where ψ maps each term in η(c) (if any) to the empty set. Note that c is
not finite branching.

Definition 15 (Bounded). A TSS R is bounded iff R is uniform and there
exists η with codomain Pω(T(Σ)) (i.e., the set η(t) is finite for each t) such that
for every rule ρ ∈ R with η-type 〈t, ψ〉, the η-type 〈t, ψ〉 is finitely inhabited.

The requirement that the function η have codomain Pω(T(Σ)) in Defini-
tion 15 means that in a bounded TSS only a finite support of the sources for a
source can be distinguished. Consider Example 5 on page 508 of [9], which we
reproduce next.

Example 3. Let A be an infinite set of actions and Σ consist of constants A∪{c}
where c 6∈ A. Consider the TSS

a
a−→ a

, a ∈ A
a

a−→ y

c
a−→ y

, a ∈ A.

If we allowed η to have codomain P(T(Σ)), e.g., η(a) = ∅ (with a ∈ A) and
η(c) = A, then it would be possible to distinguish the infinite support of the
sources in the rule template on the right, and each η-type 〈c, ψa〉 (with a ∈ A),
where ψa(a) = {a} and ψa(b) = ∅ for b 6= a, would correspond to exactly one
rule. If instead we require η to have codomain Pω(T(Σ)), e.g., η(a) = ∅ with
a ∈ A and η(c) = B for some B ∈ Pω(A), then an infinite number of sources
of premisses a ∈ A \ B will be excluded from the support for source c, i.e.,
η(c)∩ (A \B) = ∅. The sources a ∈ A \B cannot be distinguished, and thus the
infinitely many instantiations of the rule template on the right with sources of
premisses a ∈ A \B will have the same η-type 〈c, ψ〉 where ψ(t) = ∅ with t ∈ B.
Therefore, the TSS is not bounded. Notice that c is not finite branching.

Definition 16 (Bounded nondeterminism format). A rule

{ui
bi−→ u′i | i ∈ I}
t

a−→ t′

is in bounded nondeterminism format iff

1. var(ui) ⊆ var(t) for each i ∈ I, that is, all the variables occurring in the
source of its positive premisses also occur in its source, and

2. var(t′) ⊆ var(t) ∪
⋃
{var(u′i) | i ∈ I}, that is, all the variables occurring in

its target also occur in its source, or in the target of some of its positive
premisses.

A TSS R is in bounded nondeterminism format iff every rule in R is in
bounded nondeterminism format.

The bounded nondeterminism format enforces that the target of a transition ul-
timately comes from the source, i.e., the rules cannot introduce variables spuri-
ously. The following example illustrates this fact.

10

Example 4. Let Σ consist of a constant c and a binary function symbol f , and
let A = {a}. Consider the TSS

c
a−→ c

x
a−→ z

f(x, y)
a−→ f(z, y)

.

The TSS is in bounded nondeterminism format. Note that variable z in the
premiss of the rule on the right comes neither from the source of the premiss nor
from the source of the rule. However, in every application of that rule in proof
trees allowing one to derive transitions from closed terms of the form f(p, q), the

variable z will always be instantiated to some closed term p′ such that p
a−→ p′.

Therefore, the rule does not introduce variables spuriously.
On the other hand, consider the rule

f(x, y)
a−→ z .

Such a rule is not in bounded nondeterminism format because the variable z
in the target of the rule does not appear in its source. The above rule can be
used to prove transitions of the form f(p, q)

a−→ r for all closed terms p, q and
r, so the target r of a transition does not necessarily stand for a process that
can be reached from either p or q. Therefore, the rule introduces the variable z
spuriously.

Definition 17 (Strict stratification). Let R be a TSS. A strict stratification
of R consists of a map S from closed terms T (Σ) to ordinal numbers such that

for every transition rule H/t
a−→ t′ ∈ R and for every closed substitution σ,

S(σ(u)) < S(σ(t)) for every u
b−→ u′ ∈ H.

The conditions of Theorem 1 on page 509 of [9] define the rule format for
finite branching. We paraphrase Theorem 1 of [9] and its proof, and remove the
reductio ad absurdum argument that is used there, providing a direct and fully
constructive proof.

Theorem 1 (Theorem 1 of [9]). Let R be a bounded TSS in bounded non-
determinism format that has a strict stratification S. The LTS associated with
R is finite branching.

Proof. We prove that each closed term p in the LTS associated with R is finite
branching. Since R is uniform, for a given p there are only finitely many distinct
terms ti and substitutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite
index set I) such that σi(ti) = p and the rules that unify with transitions from
p have some ti as source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti are axioms of the form

ti
aj−→ t′j

, i ∈ I, j ∈ Ji

11

where the Ji are taken to be disjoint to avoid proliferation of indices. Since R is
bounded, there exists η such that for each i and for each j ∈ Ji the instantiation
of the rule template above has η-type 〈ti, ψj〉, and 〈ti, ψj〉 is finitely inhabited. By
Definition 14, all the ψj map each term in η(ti) (if any) to the empty set. Since
R is in bounded nondeterminism format, var(t′j) ⊆ var(ti), and thus the σi(t

′
j)

are closed. Since the rules above are axioms, the transitions σi(ti)
aj−→ σi(t

′
j) are

provable in R. Since all the ψj in the η-types 〈ti, ψj〉 with j ∈ Ji are equal, and
since the η-types are finitely inhabited, then the Ji are finite. Therefore, for each
i ∈ I the set

{(aj , σi(t′j)) | σi(ti)
aj−→ σi(t

′
j)}

is finite. By the finiteness of I it follows that the set {(a, p′) | p a−→ p′} is finite
and we are done.

The general case is when S(p) > 0. The rules with source ti such that
σi(ti) = p are of the form

{uk
bk−→ u′k | k ∈ Kj}

ti
aj−→ t′j

, i ∈ I, j ∈ Ji

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is bounded, there exists η such that for each i and for each j ∈ Ji, the
instantiation of the rule template above has η-type 〈ti, ψj〉, the set η(ti) is finite,
and 〈ti, ψj〉 is finitely inhabited.

For each i, we show that there are only finitely many distinct ψj with j ∈
Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from σi(ti). By

Definition 14, each rule of η-type 〈ti, ψj〉 contains a premiss of the form v
c−→ v′

for each v ∈ η(ti) and each c ∈ ψj(v). Since R is in bounded nondeterminism
format, var(v) ⊆ var(ti), and thus the σi(v) are closed. By Definitions 7 and 8,
for each transition in the node of a proof tree, if the transition unifies with a rule
of η-type 〈ti, ψj〉 then for each v ∈ η(ti) the process σi(v) can perform, at least,
a c-transition for each c ∈ ψj(v). The ψj giving rise to transitions from σi(ti) are

dependent functions of type Πv∈η(ti){c | σi(v)
c−→ τσi(v

′)} with substitutions
τ : (var(v′) \ var(v)) → T (Σ). For each i the refined type of the ψj with j ∈ Ji
is finitely inhabited, since the codomain of a dependent function depends on the
inputs of the function. Each image of ψj cannot be an arbitrary subset of A, but
only the one that is determined by the input v and by the associated LTS. That
is, the only elements in the codomain of ψj are the sets {c | σi(v)

c−→ τσi(v
′)}

where v ∈ η(ti). Since the η(ti) are finite sets, both the domain and the codomain
of ψj are finite. Therefore, for each i there are only finitely many distinct ψj with
j ∈ Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from σi(ti).

Since R is in bounded nondeterminism format, var(uk) ⊆ var(ti) and there-
fore the σi(uk) are closed terms. As S is a strict stratification, S(σi(uk)) < S(p).
By the induction hypothesis the σi(uk) are finite branching, and therefore for
each i ∈ I the set

{(bk, τ`σi(u′k)) | σi(uk)
bk−→ τ`σi(u

′
k)}

12

is finite, with τ` : ((
⋃
k∈Kj

var(u′k))\var(ti))→ T (Σ) closed substitutions where
` ranges over some index sets Lj and where j ∈ Ji. Since R is in bounded
nondeterminism format, var(t′j) ⊆ (var(ti) ∪ (

⋃
k∈Kj

var(u′k))) and therefore the

τ`σi(t
′
j) are closed terms. Since for each i there are only finitely many distinct

ψj with j ∈ Ji such that rules with η-type 〈ti, ψj〉 give rise to transitions from
σi(ti), and since the η-types 〈ti, ψj〉 are finitely inhabited, then the Lj are finite.
Therefore, for each i ∈ I the set

{(aj , τ`σi(t′j)) | σi(ti)
aj−→ τ`σi(t

′
j)} (j ∈ Ji, ` ∈ Lj)

is finite. By the finiteness of I it follows that the set {(a, p′) | p a−→ p′} is finite
and we are done. ut

Remark 1. The requirement in [9] that each set in the codomain of ψ in an η-type
〈t, ψ〉 must be finite (i.e., the codomain of ψ must be Pω(A)) is superfluous. In a
TSS that induces a finite-branching LTS such that η witnesses that the TSS is
bounded, there could be rules with η-type 〈t, ψ〉 where each set in the codomain
of ψ is infinite, but since the LTS is finite branching, the transitions in the nodes
of a proof tree will never unify with these rules.

Remark 2. The proof above follows that of Theorem 1 in [9], with the most
notable difference being that [9] uses a reductio ad absurdum argument to show
that the distinct ψj for a given i are finitely many. The proof in [9] assumes that
there exists m ∈ I such that there are infinitely many ψn with n ∈ Jm such that
rules with η-type 〈tm, ψn〉 give rise to transitions from σm(tm), and then shows
that this assumption contradicts the induction hypothesis.

We believe a direct proof is preferable over a proof by contradiction. Our
proof not only establishes the desired conclusion above, but also the intermediate
conclusion that the ψj such that rules with η-type 〈ti, ψj〉 give rise to transitions

from σi(ti) are dependent functions of type Πv∈η(ti){c | σi(v)
c−→ τσi(v

′)} with
substitutions τ : (var(v′) \ var(v))→ T (Σ). This is an interesting observation in
its own right that could be used to draw further conclusions. Besides, our proof is
fully constructive, and thus it is better suited for the purpose of mechanising it.

Example 5. Let A consist of an action a. Consider a TSS whose signature con-
tains the constants ci, with i ≥ 1, and whose rules are

x
a−→ y y

a−→ z

x
a−→ z ci

a−→ ci+1

, i ≥ 1.

This TSS is neither in bounded nondeterminism format nor strictly stratified,
and therefore does not satisfy the conditions of Theorem 1. It is easy to see
that every constant ci (i ≥ 1) has infinitely many outgoing transitions. Indeed,

ci
a−→ cj is provable for all j > i ≥ 1.

Several examples of applications of the rule format defined by the conditions of
Theorem 1 can be found in [9]. In the next section we adapt the conditions of
Theorem 1 to account for initials finiteness.

13

4 Initials finiteness

As shown by Example 4 in Section 3, the bounded nondeterminism format
enforces that no variables are introduced spuriously, thus preventing infinite
branching coming from replacing the variables in the target of a rule by infin-
itely many distinct terms. In a transition rule, there are three kinds of ‘variable
flow’ that it is worth considering:

1. variables from the source of the rule that flow to the sources of the positive
premisses,

2. variables from the source of the rule that flow to the target of the rule, and
3. variables from the targets of positive premisses that flow to the target of the

rule.

By the bounded nondeterminism format, all the variables in a rule (except for
the variables in the source of the rule and in the targets of positive premisses)
come from some of the variable flows described above. By induction on the proof
tree, it is easy to show that the ‘circulation’ of the variables is closed in the leaves
of the proof tree (i.e., by the second kind of variable flow above) and thus no
variables can be introduced spuriously. This requirement is too strong for initials
finiteness, which is only concerned with the actions of transitions that are prov-
able from a given process. For initials finiteness it is immaterial whether the rules
introduce variables in the target spuriously, and the bounded nondeterminism
format can be relaxed. However, as the following example shows, dropping all
the requirements on the variable flow does not ensure initials finiteness.

Example 6. Let A be an infinite set of actions and let Σ = A ∪ {c, f} with c a
constant, f a unary function symbol and f, c 6∈ A. Consider the TSS

f(a)
a−→ f(a)

, a ∈ A
f(x)

a−→ y

c
a−→ y

, a ∈ A.

The TSS is uniform and has a strict stratification given by

S(c) = 1
S(f(p)) = 0.

We let η(f(a)) = ∅ (with a ∈ A) and η(c) = {f(x)}. For each a ∈ A, the instan-
tiation of the rule template on the left has η-type 〈f(a), ∅〉, and the instantiation
of the rule on the right has η-type 〈c, ψa〉 where ψa(f(x)) = {a}. However, the
associated LTS is not initials finite because the set of initials of c is A.

Variable x in the rule template on the right does not come from the source of
the rule. Thus, there exist infinitely many substitutions τ : {x} → A such that
the transitions from τ(f(x)) unify with some instantiation of the rule template
on the left. For initials finiteness, it is enough to prevent spurious variables in
the sources of positive premisses.

We now introduce the initials finite format, which takes care of the first kind
of variable flow described above.

14

Definition 18 (Initials finite format). A rule

{ui
bi−→ u′i | i ∈ I}
t

a−→ t′

is in initials finite format iff all the variables occurring in the sources of its
positive premisses also occur in its source, that is, var(ui) ⊆ var(t) for each
i ∈ I.

A TSS R is in initials finite format iff every rule in R is in initials finite
format.

The following example shows that the requirements on the variable flow,
except for the one enforced by the initials finite format, can be dropped.

Example 7. Let A = {a} and Σ consists of infinitely many constants {c, d, . . .}.
Consider the TSS with rule

c
a−→ x

.

The system is uniform and has a trivial strict stratification. The rule above has
η-type 〈c, ψ〉 where ψ maps each term in η(c) (if any) to the empty set, and thus
the TSS is bounded. Variable x comes neither from the target of any positive
premiss, since there are none, nor from the source of the rule, and hence the TSS
is not in bounded nondeterminism format. However, the TSS is in initials finite
format. Notice that the associated LTS is initials finite.

However, replacing the bounded nondeterminism format by the initials finite
format is not enough to cover all the TSSs in which we are interested. Some
initials-finite LTSs are induced by TSSs which are not bounded, despite being
in initials finite format. This is shown in the following example.

Example 8. Let A = {a} and letΣ consist of infinitely many constants {c, d, . . .}.
Let P = {pi | i ∈ I} (with the pi distinct and I an infinite index set) be a proper
subset of T (Σ), i.e., P ⊂ T (Σ). Consider the TSS with rules

c
a−→ pi

, i ∈ I.

All the rules above have η-type 〈c, ψ〉 where ψ maps each term in η(c) (if any)
to the empty set, and hence the η-type 〈c, ψ〉 is infinitely inhabited and the TSS
is not bounded. However, the associated LTS is initials finite.

Example 8 implements bounded quantifiers by means of a rule template and
an ad hoc infinite index set I. The use of bounded quantifiers2 is different from

2 Notice that ‘bounded’ in ‘bounded quantifiers’ does not have the connotation of
‘finite’ that is present in ‘bounded nondeterminism’. The bounded quantifiers restrict
the range of the quantified variable, but this range could still be infinite. Examples 7
and 8 illustrate the difference between universal quantifiers and bounded quantifiers
with an infinite range.

15

the implicit universal quantifiers for variables in the rules of a TSS, as illustrated
in Example 7. The TSS of Example 7 consists of a single rule whose target x
ranges over the set of closed terms T (Σ). On the contrary, the TSS of Example 8
consists of a rule template such that the targets pi with i ∈ I range over an
infinite proper subset of the set of closed terms, i.e., {pi | i ∈ I} ⊂ T (Σ). Tech-

nically, the sentences ∀x. c a−→ x and ∀x ∈ {pi | i ∈ I}. c
a−→ x are respectively

a Π1-sentence and a Π0-sentence in the Lévy hierarchy [18].
Bounded quantifiers are conventional and useful, and we wish our rule format

to allow for TSSs like the one of Example 8. To this end, we need a more refined
notion of bounded TSS, which disregards the cardinality of the set of inhabitants
of an η-type and takes into account the actions of rules.

We now define the actions of an η-type and introduce the notion of initials-
bounded TSS.

Definition 19 (Actions of an η-type). Let R be a TSS. We define χ :
η-type→ P(A) as the map that delivers, for each η-type 〈t, ψ〉, the set of actions
of the rules that have η-type 〈t, ψ〉. More formally,

χ(t, ψ) = {a | ρ has η-type 〈t, ψ〉 and a is the action of ρ}.

The set χ(t, ψ) is said to be the actions of η-type 〈t, ψ〉.

Definition 20 (Initials bounded). A TSS R is initials bounded iff R is uni-
form and there exists η with codomain Pω(T(Σ)) (i.e., the set η(t) is finite for
each t) such that for every rule ρ ∈ R with η-type 〈t, ψ〉, the η-type 〈t, ψ〉 has
finitely many actions, i.e., χ(t, ψ) ∈ Pω(A).

In the TSS of Example 8, the η-type 〈c, ψ〉 is infinitely inhabited but it has
finitely many actions as χ(c, ψ) = {a}. Therefore, the TSS of Example 8 is
initials bounded.

Intuitively, since rules having the same η-type are those that could potentially
be used to derive transitions from a closed term p that unifies with the source
of the rules, requiring that η-types have finitely many actions can help one to
ensure that p be initials finite. However, as the following example shows, having
a strict stratification is also needed to ensure initials finiteness as it intuitively
disallows ‘unguarded recursion’.

Example 9. Let Σ consist of a constant c and a unary function symbol f , and
let A = {a1, a2, . . .} be an infinite set of actions. Consider the TSS with rules

f(x)
a1−→ c

f(x)
ai−→ y

f(x)
ai+1−→ y

, i ∈ N.

The TSS is uniform and in initials finite format. We let η(f(x)) = {f(x)}. The
rule on the left has η-type 〈f(x), ψ〉 where ψ(f(x)) = ∅, and for each i ∈ N,
the instantiation of the rule template on the right has η-type 〈f(x), ψi〉 where
ψi(f(x)) = {ai}. The set of actions of 〈f(x), ψ〉 is {a1}, and for each i ∈ N

16

the set of actions of 〈f(x), ψi〉 is {ai+1}. Therefore, the TSS is initials bounded.
However, the TSS does not have a strict stratification. Notice that the associated
LTS is not initials finite, since the set of initials of f(c) is A.

The conditions of the following theorem define the rule format for initials
finiteness.

Theorem 2. Let R be an initials-bounded TSS in initials finite format that has
a strict stratification S. The LTS associated with R is initials finite.

Proof. We prove that each closed term p in the LTS associated with R is initials
finite. Since R is uniform, for a given p there are only finitely many distinct
terms ti and substitutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite
index set I) such that σi(ti) = p and the rules that unify with transitions from
p have some ti as source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti are axioms of the form

ti
aj−→ t′k

, i ∈ I, j ∈ Ji, k ∈ Kj

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is initials bounded, there exists η such that for each i, for each j ∈ Ji, and
for each k ∈ Kj , the instantiation of the rule template above has η-type 〈ti, ψk〉,
and 〈ti, ψk〉 has finitely many actions, i.e., χ(ti, ψk) ∈ Pω(A). By Definition 14,
all the ψk map each term in η(ti) (if any) to the empty set, so all the rules
above with source ti have the same η-type. Since the rules above are axioms,

the transitions σi(ti)
aj−→ τσi(t

′
k) are provable in R for each substitution τ :

(var(t′j) \ var(ti)) → T (Σ). Since all the ψk in the η-types are equal, and since
the η-types have finitely many actions, the sets Ji are finite. Therefore, for each
i ∈ I the set

{aj | ∃p′ s.t. σi(ti)
aj−→ p′} = χ(ti, ψk)

is finite. By the finiteness of I it follows that the set {a | ∃p′ s.t. p
a−→ p′} is

finite and we are done.
The general case is when S(p) > 0. The rules with source ti such that

σi(ti) = p are of the form

{u`
b`−→ u′` | ` ∈ Lk}

ti
aj−→ t′k

, i ∈ I, j ∈ Ji, k ∈ Kj

where the Ji, the Kj , and the Lk are taken to be disjoint to avoid proliferation
of indices. Since R is initials bounded, there exists η such that for each i, for
each j ∈ Ji, and for each k ∈ Kj , the instantiation of the rule template above
has η-type 〈ti, ψk〉, the set η(ti) is finite, and 〈ti, ψk〉 has finitely many actions.

For each i, we show that there are only finitely many distinct ψk with k ∈ Kj

and j ∈ Ji such that rules with η-type 〈ti, ψk〉 give rise to transitions from
σi(ti). By Definition 14, each rule of η-type 〈ti, ψk〉 contains a premiss of the

17

form v
c−→ v′ for each v ∈ η(ti) and each c ∈ ψk(v). Since R is in initials finite

format, var(v) ⊆ var(ti), and thus the σi(v) are closed. By Definitions 7 and 8,
for each transition in the node of a proof tree, if the transition unifies with a
rule of η-type 〈ti, ψk〉, then for each v ∈ η(ti) the processes σi(v) can perform,
at least, a c-transition for each c ∈ ψk(v). The ψk giving rise to transitions

from σi(ti) are dependent functions of type Πv∈η(ti){c | σi(v)
c−→ τσi(v

′)} with
substitutions τ : (var(v′) \ var(v))→ T (Σ). For each i the refined type of the ψk
with k ∈ Kj and i ∈ Ji is finitely inhabited, since the codomain of a dependent
function depends on the inputs of the function. Each image of ψk cannot be an
arbitrary subset of A, but only the one determined by the input v and by the
associated LTS. That is, the only elements in the codomain of ψk are the sets
{c | σi(v)

c−→ τσi(v
′)} where v ∈ η(ti). Since the η(ti) are finite sets, both the

domain and the codomain of ψk are finite. Therefore for each i there are only
finitely many distinct ψk with k ∈ Kj and j ∈ Ji such that rules with η-type
〈ti, ψk〉 give rise to transitions from σi(ti).

Since for each i there are only finitely many distinct ψk with k ∈ Kj and
j ∈ Ji such that rules with η-type 〈ti, ψk〉 give rise to transitions from σi(ti),
and since the η-types 〈ti, ψk〉 have finitely many actions, then for each i ∈ I the
set

{aj | ∃p′ s.t. σi(ti)
aj−→ p′}

is finite. By the finiteness of I it follows that the set {a | ∃p′ s.t. p
a−→ p′} is

finite and we are done. ut
Remark 3. In Theorem 2 the TSS R is not required to be in bounded non-
determinism format. The terms t′k may have variables which are neither in ti
nor in

⋃
`∈Lk

var(u′`). Consider τm : (var(t′k) \ var(ti)) → T (Σ) closed substitu-

tions with m ranging over index sets Mk such that σi(ti)
aj−→ τmσi(t

′
k). For each

σi(ti) there may be infinitely many transitions σi(ti)
aj−→ τmσi(t

′
k) because the

Mk may be infinite. This is illustrated by Example 7.

Remark 4. In Theorem 2 the η-types are not required to be finitely inhabited.
For each η-type 〈ti, ψk〉 there could be infinitely many rules with conclusions

ti
aj−→ t′k, and the Kj need not be finite. The TSS R could be in bounded non-

determinism format, and then there would be τm : ((
⋃
`∈Lk

var(u′`)) \ var(ti))→
T (Σ) closed substitutions with m ∈ Mk and Mk are finite index sets such that

σi(ti)
aj−→ τmσi(t

′
k). But, although the Mk may be finite, for each σi(ti) there

may be infinitely many transitions σi(ti)
aj−→ τmσi(t

′
k), because the Kj may be

infinite. This is illustrated by Example 8.

We now present an example of application of the rule format defined by the
conditions of Theorem 2.

Example 10. Let Σ contain constants c and 0 and the unary action prefixing
operation a. from Milner’s CCS [20]. Consider the TSS with rules

a.x
a−→ x︸ ︷︷ ︸
b

c
a−→ a.a.︸ ︷︷ ︸

i times

0
, i ≥ 0.

18

Intuitively, the constant c is akin to a random assignment [4]. The TSS is uniform
and has a trivial strict stratification. We let η(a.x) = ∅ and η(c) = ∅. The rule
on the left has η-type 〈a.x, ∅〉 and each instantiation of the rule template on
the right has η-type 〈c, ∅〉. The rule template on the right implements bounded
quantifiers as illustrated in Example 8. Although the η-type 〈c, ∅〉 is infinitely
inhabited, the set of its actions is {a}. The associated LTS is initials finite.

In the next section we develop a rule format for image finiteness.

5 Image finiteness

Consider the properties of an LTS in Definition 13, which we paraphrase here in
mathematical notation:

Finite branching: ∀p. {(a, p′) | p a−→ p′} ∈ Pω(A× T (Σ)).

Initials finiteness: ∀p. {a | ∃p′. p a−→ p′} ∈ Pω(A).

Image finiteness: ∀p.∀a. {p′ | p a−→ p′} ∈ Pω(T (Σ)).

We consider the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic
logic (BHK interpretation for short) [15]. According to the BHK interpretation,
the proof of any of the properties above consists of a function that takes one
argument for each of the universally quantified symbols and returns a proof of
the trailing proposition after the quantifiers,3 which asserts that some set is
finite. As a proof of each assertion, it is enough to exhibit the set in point. For
example, given a TSS R the proof that the LTS associated with R is initials
finite consists of a function that takes an element p ∈ T (Σ) and delivers the

finite set of actions a such that p
a−→ p′ (with p′ ∈ T (Σ)) is provable in R. The

BHK interpretation provides a profitable insight on the notion of η-types. In
essence, the η-types are a sort of syntactic fingerprint of the BHK interpretation
of initials finiteness. Recall from Definition 14 that in an η-type 〈t, ψ〉 the map
ψ takes a term and delivers a set of actions. This map represents the function
corresponding to the BHK interpretation. The disciplined focus on the positives
premisses (e.g., through the finite support of the sources defined by η and with
the variable flow enforced by the initials finite format) is only an instrument to
construct the intuitionistic proof from ψ, by induction on the strict stratification
of the TSS. This is exemplified by our proof of Theorem 2.

It may seem odd that the η-types, which correspond to the BHK interpret-
ation of initials finiteness, are also used in the rule format that ensures finite
branching. The map ψ delivers a set of actions b, instead of the set of pairs of
actions and terms (b, u′) that would be expected from the BHK interpretation of
finite branching. The reason lies in the fact that the additional requirements of
the rule format make keeping track of the targets u′ redundant. To see this, let

the positive premisses be of the shape u
b−→ u′. Since the TSS is required to be in

3 Recall that in intuitionistic logic a universal quantifier ‘∀x.’ is akin to a big lambda
‘Λx.’, i.e., a binding operator at the level of types.

19

bounded nondeterminism format, then var(u) ⊆ var(t) and the σ(u) are closed.
Thus, for each u ∈ η(t) there are at most finitely many pairs (b, u′) such that

b ∈ ψ(u) and σ(u)
b−→ τσ(u′) with substitutions τ : (var(u′) \ var(u)) → T (Σ).

Therefore, keeping track of the targets u′ of positive premisses is redundant be-
cause the requirements of the rule format ensure that the associated LTS is finite
branching.

The different requirements for bounded TSS and for initials-bounded TSS
complete the picture, respectively for the BHK interpretation of finite branching
and of initials finiteness. In a bounded TSS, it is required that there exists an
η such that each η-type 〈t, ψ〉 is finitely inhabited. This enforces that if for each
term t and for each substitution σ such that σ(t) is closed there are only finitely
many ψ such that the rules that give rise to transitions from σ(t) have η-type

〈t, ψ〉, then the set of pairs (a, t′) such that σ(t)
a−→ τσ(t′) with substitutions

τ : (var(t′) \ var(t)) → T (Σ) is finite. The bounded nondeterminism format
ensures that there are only finitely many substitutions τ , and then the set of
pairs (a, τσ(t′)) is also finite and the associated LTS is finite branching. In an
initials-bounded TSS, it is only required that there exists an η such that each
η-type 〈t, ψ〉 has finite actions. This enforces that if for each term t and for each
substitution σ such that σ(t) is closed there are only finitely many ψ such that
the rules that give rise to transitions from σ(t) have η-type 〈t, ψ〉, then the set

of actions a such that σ(t)
a−→ τσ(t′) with substitutions τ : (var(t′) \ var(t))→

T (Σ) is finite. The bounded nondeterminism format can be replaced by the
initials finite format because the number of substitutions τ is immaterial in
order to keep the number of actions a finite, and thus for the associated LTS to
be initials finite.

We now introduce the θ-types, which are gleaned from the BHK interpreta-
tion of image finiteness. Unlike the η-types of [9], which carry information about
the sources of positive premisses in rules, the θ-types also keep track of the
actions that label positive premisses.

We let θ : (T(Σ) × A) → P(T(Σ) × A) be the maps that parametrise the
θ-types of Definition 21 to follow. The maps θ deliver, for a given term t and
action a, a predefined set of sources and actions of positive premisses in rules
that have source t and action a. We say that θ(t, a) is the support of the sources
and of the actions for source and action (t, a).4

Definition 21 (θ-type). Let R be a TSS, ρ ∈ R a rule with source t, action a,

and positive premisses {ti
ai−→ t′i | i ∈ I}, and θ a map with type (T(Σ)× A)→

P(T(Σ) × A). We define φ : θ(t, a) → P(T(Σ)) as the map that delivers, for
each term u and action b in the support of the sources and of the actions for
(t, a), i.e., (u, b) ∈ θ(t, a), the targets of the positive premisses of ρ with source
u and action b. More formally,

φ(u, b) = {t′i | i ∈ I ∧ ti = u ∧ ai = b}.
4 We beg the reader to bear with us in the repetition of ‘sources’, ‘actions’, ‘source’,

and ‘action’ in sentences like the above. The ‘sources’ and ‘actions’ refer to the
positive premisses, and the ‘source’ and ‘action’ to the conclusion of the rule.

20

The triple 〈t, a, φ〉 is said to be the θ-type of rule ρ.

The θ-types distinguish rules based on their source, their action, and on the
set of targets of their positive premisses whose source and action belong to the
predefined set specified by the map θ. Let us illustrate this with an example.

Example 11. Let Σ consist of a constant c and a unary function symbol f and
let A be an infinite set of actions. Consider the TSS

c
a−→ c

, a ∈ A
x

a−→ y

f(x)
a−→ y

, a ∈ A.

For each a ∈ A, we let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. For each a ∈ A,
the θ-types of the instantiations of the rule templates on the left and on the
right are 〈c, a, ∅〉 and 〈f(x), a, φa〉 respectively, where φa(x, a) = {y}. Notice
that the associated LTS is image finite, because the target of every transition is
c. However, it is neither finite branching nor initials finite, since every process
can do an a-transition for each a ∈ A.

Intuitively, the θ-types play for image finiteness the role that the η-types
play for finite branching. Rules having the same θ-type 〈t, a, φ〉 are those that
could potentially be used to derive a-transitions from a closed term p that is
an instantiation of t. In order to ensure that the set of processes that are the
targets of a-transitions from a closed term p is finite, it is reasonable to require
that each η-type be finitely inhabited. However, for image finiteness, the variables
occurring in the targets of positive premisses of rules have to be used uniformly.
The following example illustrates this fact.

Example 12. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Let the yi with i ∈ N be infinitely many distinct variables.
Consider the TSS

c
a−→ c

x
a−→ yi

f(x)
a−→ f i(x)

, i ∈ N

where f i stands for applying i times the function symbol f . The TSS is uniform
in the sources (recall Definition 10) and has a strict stratification given by

S(c) = 0
S(f(p)) = 1 + S(p).

We let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. The rule on the left has θ-type
〈c, a, ∅〉, and for each i ∈ N, the instantiation of the rule template on the right
has θ-type 〈f(x), a, φi〉, where φi(f(x), a) = {yi}. However, the associated LTS is
not image finite, because process f(c) can perform infinitely many a-transitions
to f i(c) (with i ∈ N).

In the TSS of Example 12 there are infinitely many different variables yi, and
thus there are infinitely many different θ-types that morally should be the same.

21

The inhabitants of each of these θ-types give rise, for a given source and action,
to transitions with different targets, and the associated LTS is not image finite.
To address this issue we introduce the notion of uniform TSS in the targets of
positive premisses. This notion extends that of uniform TSS in the source, which
is the uniform TSS from [9] that we adapted in Definition 10.

Definition 22 (Uniform in the targets of positive premisses). A TSS R
is uniform in the targets of positive premisses iff t′ = t′′ holds whenever t′ and
t′′ have the same structure and t

a−→ t′ and t
a−→ t′′ are positive premisses of

any two (not necessarily different) rules.

The TSS of Example 12 is not uniform in the targets of positive premisses.
Indeed, x

a−→ y1 and x
a−→ y2 are positive premisses of rules and y1 and y2

have the same structure, but y1 6= y2. However, the LTS induced by the TSS of
Example 12 can be specified by a TSS that is uniform in the targets of positive
premisses as follows.

Example 13. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Consider the TSS

c
a−→ c

x
a−→ y

f(x)
a−→ f i(x)

, i ∈ N.

The TSS is uniform both in the sources of rules and in the targets of their
positive premisses and has a strict stratification given by

S(c) = 0
S(f(p)) = 1 + S(p).

We let θ(c, a) = ∅ and θ(f(x), a) = {(x, a)}. The rule on the left has θ-type
〈c, a, ∅〉, and for each i ∈ N the instantiation of the rule template on the right
has θ-type 〈f(x), a, φ〉 where φ(x, a) = {y}. Therefore, the θ-type 〈f(x), a, φ〉
is infinitely inhabited. Notice that the associated LTS is equal to that in Ex-
ample 12, which is not image finite.

Next we prove a proposition that resembles Proposition 2 of Section 2, which
states that for a uniform TSS in the targets of positive premisses, each transition
is a substitution instance of at most finitely many positive premisses of the TSS.

Proposition 3. Let R be a uniform TSS in the targets of positive premisses. For
each transition p

a−→ p′, and for each term t and substitution σ : var(t)→ T (Σ)
such that σ(t) = p, the set of pairs (t′, τ) with τ : var(t′) \ var(t) → T (Σ) such

that σ(t)
a−→ τσ(t′) = p

a−→ p′ and t
a−→ t′ is a positive premiss of some rule in

R is finite.

Proof. We prove the generalised proposition:

22

Let R be a uniform TSS in the targets of positive premisses. For each
pair (p

a−→ p′, r) where p
a−→ p′ is a transition and r is an approximant

of p′ (i.e., r v p′) and for each term t and substitution σ : var(t)→ T (Σ)
such that σ(t) = p, the set of pairs (t′, τ) with τ : var(t′) \ var(t)→ T (Σ)
such that there exists r′ an approximant of r (i.e., r′ v r) with the same

structure as t′, and σ(t)
a−→ τσ(t′) = p

a−→ p′ and t
a−→ t′ is a positive

premiss of some rule in R, is finite.

The original proposition follows from the generalised proposition by fixing r = p′.
We fix a t and a σ such that σ(t) = p and construct the set S of pairs (t′, τ) that
meet the conditions of the generalised proposition and show that S is finite. We
proceed by well-founded induction on the set of approximants of r ordered by
the less-defined-than relation (@).

We first check that the generalised proposition holds for the @-minimal par-
tial terms in the set of approximants of r. The only such partial term is r0 = ⊥.
There exists only one r′0 an approximant of r (i.e., r′0 = ⊥ v ⊥ = r0) and
the only terms that have the same structure as r′0 are the variables. Since R
is uniform in the targets of positive premisses, all the positive premisses of R
with source t, action a, and whose target is a variable (if there is any) have
the same variable x as target. If there exist no positive premisses as described
before, then the set we are looking for is the empty set. If there exist positive
premisses as described before, we distinguish two cases. If x ∈ var(t), then the
set we are looking for is S = {(x, ∅)}. Otherwise, the set we are looking for is
S = {(x, {x 7→ p′})}. All three sets are finite.

Now we check that the generalised proposition holds for an arbitrary partial
term ra 6= ⊥ in the set of approximants of r. Notice that the partial term ra
is such that ra v r v p′. By the induction hypothesis, for every rx such that
rx @ ra the set Sx of pairs (t′, τ) such that there exists r′x an approximant of

rx (i.e., r′x v rx) with the same structure as t′, and σ(t)
a−→ τσ(t′) = p

a−→ p′

and t
a−→ t′ is a positive premiss of some rule in R is finite. Since R is uniform

in the targets of positive premisses, all the positive premisses with source t,
action a, and whose target has the same structure as r′x (if there is any) have
the same target u. Since r′x @ ra, then r′x is obtained by replacing by ⊥ one
or more maximally disjoint subterms of ra that are different form ⊥. We let
xj (with j ranging over some index set J) be the variables that occur in u in
the positions corresponding to the occurrences of ⊥ in r′x. (Notice that no other
variables could occur in u, since u has the same structure as r′x, and r′x @ p′.)
We let tj be the terms such that p′ results from replacing respectively the xj
by the tj in u. If there exist no rules with a positive premiss whose target is u,
then the set we are looking for is Sx. Otherwise, the set we are looking for is
S = Sx ∪ {(u, {xj 7→ tj | j ∈ J ∧ xj 6∈ var(t)})}, which is finite. ut

The notion of image-bounded TSS, which we introduce next, collects the
requirements that we have discussed so far.

Definition 23 (Image bounded). A TSS R is image bounded iff R is uniform
in the sources of rules and in the targets of their positive premisses, and there

23

exists θ with codomain Pω(T(Σ)× A) (i.e., for each pair (t, a) the set θ(t, a) is
finite) such that for every rule ρ ∈ R with θ-type 〈t, a, φ〉, the θ-type 〈t, a, φ〉 is
finitely inhabited.

For image finiteness, the restrictions on the variable flow have to be enforced
again, and the bounded nondeterminism format is needed. Example 7 in Sec-
tion 4 shows that the variables in the target of a rule have to occur in either the
source of the rule, or in the targets of its positive premisses. The LTS induced by
the TSS in Example 7 is not image finite because c

a−→ d holds for each of the
infinitely many constants d. The following example is a variation on Example 6
in Section 4 that shows that for image finiteness, the variables in the sources of
positive premisses have to occur in the source of the rules.

Example 14. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a}. Consider the TSS

f(x)
a−→ f(x)

f(x)
a−→ y

c
a−→ y

.

The TSS is uniform both in the sources of rules and in the targets of their
positive premisses and has a strict stratification given by

S(f(p)) = 0
S(c) = 1.

We let θ(f(x), a) = ∅ and θ(c, a) = {(f(x), a)}. The rule on the left has θ-type
〈f(x), a, ∅〉, and the rule on the right has θ-type 〈c, a, φ〉 where φ(f(x), a) = {y},
and thus the TSS is image bounded. However c

a−→ f(p) for every p ∈ T (Σ) and
thus the associated LTS is not image finite.

In an image-bounded TSS, it is required that there exists a θ such that each
θ-type 〈t, a, φ〉 is finitely inhabited. This enforces that if for each term t, for each
action a, and for each substitution σ such that σ(t) is closed there are only finitely
many φ such that the rules that give rise to a-transitions from σ(t) have θ-type

〈t, a, φ〉, then the set of targets t′ such that σ(t)
a−→ τσ(t′) with substitutions

τ : (var(t′) \ var(t)) → T (Σ) is finite. The bounded nondeterminism format
ensures that only finitely many τ exist, and thus the set of targets τσ(t′) is also
finite and the associated LTS is image finite.

The following example shows that having a strict stratification is needed to
ensure image finiteness.

Example 15. Let A consist of an action a, and let Σ = A ∪ {f} with f a unary
function symbol f . Consider the TSS

f(x)
a−→ a

f(x)
a−→ y

f(x)
a−→ f(y)

.

The TSS is uniform in both the sources of rules and the targets of their positive
premisses, and it is in bounded nondeterminism format. We let θ(f(x), a) =

24

{(f(x), a)}). The rule on the left has θ-type 〈f(x), a, φ1〉 with φ1(f(x), a) = ∅.
The rule on the right has θ-type 〈f(x), a, φ2〉 with φ2(f(x), a) = {y}. The TSS
is image bounded. However, the TSS does not have a strict stratification. Notice
that the associated LTS is not image finite since f(a) can perform an a-transition
to each of the terms f i(a).

The conditions of the following theorem define the rule format for image
finiteness.

Theorem 3. Let R be an image-bounded TSS that is in bounded nondetermin-
ism format and has a strict stratification S. The LTS associated with R is image
finite.

Proof. We prove that for each closed term p and for each action a in the LTS
associated with R the set {p′ | p a−→ p′} is finite. Since R is uniform in the
sources, for a given p there are only finitely many distinct terms ti and substi-
tutions σi : var(ti) → T (Σ) (i.e., the i ranges over a finite index set I) such
that σi(ti) = p and the rules that unify with transitions from p have some ti as
source. We proceed by induction on S(p).

The initial case is when S(p) = 0. Since S(σi(ti)) = 0, the rules with source
ti and action a are axioms of the form

ti
a−→ t′j

, i ∈ I, j ∈ Ji

where the Ji are taken to be disjoint to avoid proliferation of indices. Since R
is image bounded, there exists θ such that for each i and for each j ∈ Ji, the
instantiation of the rule template above has θ-type 〈ti, a, φj〉, and 〈ti, a, φj〉 is
finitely inhabited. By Definition 21, all the φj map each pair in θ(ti, a) (if any) to
the empty set. Since R is in bounded nondeterminism format, var(t′j) ⊆ var(ti),
and thus the σi(t

′
j) are closed. Since the rules above are axioms, the transitions

σi(ti)
a−→ σi(t

′
j) are provable in R. Since all the φj are equal, and since the

θ-types are finitely inhabited, then the Ji are finite. Therefore, for each i ∈ I
the set

{σi(t′j) | σi(ti)
a−→ σi(t

′
j)}

is finite. By the finiteness of I it follows that the set {p′ | p a−→ p′} is finite and
we are done.

The general case is when S(p) > 0. The rules with action a and source ti
such that σi(ti) = p are of the form

{uk
bk−→ u′k | k ∈ Kj}
ti

a−→ t′j
, i ∈ I, j ∈ Ji

where the Ji and the Kj are taken to be disjoint to avoid proliferation of indices.
Since R is image bounded, there exists θ such that for each i and for each j ∈ Ji,
the instantiation of the rule template above has θ-type 〈ti, a, φj〉, the set θ(ti, a)
is finite, and 〈ti, a, φj〉 is finitely inhabited.

25

For each i, we show that there are only finitely many distinct φj with j ∈ Ji
such that rules with θ-type 〈ti, a, φj〉 give rise to transitions from σi(ti). By Defin-

ition 21, each rule of θ-type 〈ti, a, φj〉 contains a premiss of the form v
c−→ v′ for

each (v, c) ∈ θ(ti, a) and each v′ ∈ φj(v, c). Since R is in bounded nondetermin-
ism format, var(v) ⊆ var(ti) and thus the σi(v) are closed. By Definitions 7
and 8, for each transition in the node of a proof tree, if the transition unifies
with a rule of θ-type 〈ti, a, φj〉 then for each pair (v, c) ∈ θ(ti, a) and for each
v′ ∈ φj(v, c) the process σi(v) can perform, at least, a c-transition to τσi(v

′) for
some substitution τ : (var(v′)\var(v))→ T (Σ). The φj giving rise to transitions

from σi(ti) are dependent functions of type Π(v,c)∈θ(ti,a){v′ | σi(v)
c−→ τσi(v

′)}
with substitutions τ : (var(v′) \ var(v)) → T (Σ). For each i the refined type
of the φj with j ∈ Ji is finitely inhabited, since the codomain of a dependent
function depends on the inputs of the function. Each image of φj cannot be an
arbitrary subset of T(Σ), but only the one determined by the input (v, c) and
by the associated LTS. That is, the only elements in the codomain of φj are the

sets {v′ | σi(v)
c−→ τσi(v

′)} where (v, c) ∈ θ(ti, a). Since the θ(ti, a) are finite
sets, both the domain and the codomain of φj are finite. Therefore, for each i,
there are only finitely many distinct φj with j ∈ Ji such that rules with θ-type
〈ti, a, φj〉 give rise to transitions from σi(ti).

Since R is in bounded nondeterminism format, var(uk) ⊆ var(ti) with k ∈
Kj and j ∈ Ji, and therefore the σi(uk) are closed terms. Since S is a strict
stratification, S(σi(uk)) < S(p). By the induction hypothesis the σi(uk) are
image finite, and for each i and for each bk the set

{τ`σi(u′k) | σi(uk)
bk−→ τ`σi(u

′
k)}

is finite, with τ` : ((
⋃
k∈Kj

var(u′k))\var(ti))→ T (Σ) closed substitutions where
` ranges over some index sets Lj . Since R is uniform in the targets of posit-
ive premisses and by Proposition 3 the Lj are finite. Since R is in bounded
nondeterminism format, var(t′j) ⊆ (var(ti) ∪ (

⋃
k∈Kj

var(u′k))) and therefore the

τ`σi(t
′
j) are closed terms. Since for each i there are only finitely many distinct

φj with j ∈ Ji such that rules with θ-type 〈ti, a, φj〉 give rise to transitions from
σi(ti), and since the Lj are finite, then for each i ∈ I the set

{τ`σi(t′j) | σi(ti)
a−→ τ`σi(t

′
j)}

is finite. By the finiteness of I it follows that the set {p′ | p a−→ p′} is finite and
we are done. ut

In Theorem 3 the rules of R are not required to have finitely inhabited η-
types. This is illustrated by Example 16 below.

Example 16. Let Σ consist of infinitely many constants c1, c2, . . . and assume
A = {a1, a2, . . .}. Consider the TSS

x
ai−→ ci

, i ∈ N.

26

The TSS is uniform in both the sources of rules and in their targets of premisses,
and it is in bounded nondeterminism format and has a strict stratification given
by S(ci) = 0, i ≥ 1. We let θ(x, ai) = ∅ with i ∈ N. For each i ∈ N, the
instantiation of the rule template above has θ-type 〈x, ai, ∅〉. The associated
LTS is image finite because for each process p and for each i ∈ N, p can only
perform an ai-action to ci. However, the LTS is neither finite branching nor
initials finite.

Example 5.3 from page 515 of [9] is an example of application of the rule
format defined by the conditions of Theorem 3. We reproduce it next.

Example 17 (Example 5.3 of [9]). Let r ∈ R>0. Consider the operator for dead-
lock in real-time Basic Process Algebra [17], which can be expressed by the rule

δ[r]
δ[s]−→ X

0 < s < r.

Process δ[r] is infinitely branching and has an uncountable set of initials. How-
ever, it is image finite as can be checked using our format. The TSS above is
uniform in both the sources of rules and in the targets of their positive premisses,
and is in bounded nondeterminism format and has a trivial strict stratification.
Take θ(δ[r], δ[s]) = ∅ for each r, s ∈ R>0. The θ-type of each instantiation of the
rule template above is 〈δ[r], δ[s], ∅〉. By Theorem 3, the associated LTS is image
finite.

6 Future work

We say that the rule formats are adequate with respect to the corresponding
finiteness property, i.e., the syntactic conditions ensure that the associated LTS
has the property. However, the rule formats are not complete with respect to the
corresponding finiteness property, i.e., not all the LTSs that have the property
are induced by TSSs that satisfy the syntactic conditions. One direction for
future work is to generalise the rule formats to cover such TSSs. In the following
examples we collect some of the cases that we are aware are not covered by the
rule formats.

Example 18. Consider the following TSS Rpc describing a fragment of an in-
stance of the algebra for process creation from [5]. The signature for that TSS
contains the following operations:

– constants a, ε and δ,

– the unary process-creation operation new, and

– the binary operations · and |�, which we write in infix style.

27

We set A = {a,X} and use α to range over it. The set of rules of Rpc, for whose
intuition we refer the reader to [5], are:

a
a−→ ε ε

X−→ δ

new(x)
X−→ x · δ

x
a−→ x′

new(x)
a−→ new(x′)

x
a−→ x′

x · y a−→ x′ · y
x

X−→ x′, y
α−→ y′

x · y α−→ x′ |� y′
x

X−→ x′, x′
a−→ x′′, y

a−→ y′

x · y a−→ x′′ |� y′

x
a−→ x′

x |� y a−→ x′ |� y
y

α−→ y′

x |� y α−→ x |� y′
x

a−→ x′, y
a−→ y′

x |� y a−→ x′ |� y′
.

Note that the third rule for the operator · is not in bounded nondeterminism
format because of the premise x′

a−→ x′′. Therefore the TSS Rpc does not meet
the requirements of Theorem 1. On the other hand, it is not too hard to show
that the LTS induced by Rpc is finite branching. (This is also a consequence of
the more general Elimination Theorem from [5, Theorem 4.9].)

Example 19. Let Σ consist of a constant c and a unary function symbol f , and
let A = {a}. Consider the TSS with rules

f(x)
a−→ c

f(x)
a−→ y

c
a−→ y

.

This TSS is uniform and has a strict stratification given by

S(f(p)) = 0
S(c) = 1.

We let θ(f(x), a) = ∅ and θ(c, a) = {(f(x), a)}. The rule on the left has θ-type
〈f(x), a, ∅〉, and the rule on the right has θ-type 〈c, a, φ〉 where φ(f(x), a) = {y}.
Variable x in the premiss of the rule on the right does not occur in the source of
the rule, and hence the TSS is not in bounded nondeterminism format and does
not meet the rule format for image finiteness. However, the set of images of any
process p for action a is {c}, and therefore the associated LTS is image finite.
Notice that the TSS does not meet the rule format for finite branching either,
but the associated LTS is finite branching.

Example 20. Let A consist of infinitely many actions a1, a2, . . . and let Σ =
A ∪ {f, g} where f and g are unary function symbols. Consider the TSS with
rules

g(a1)
a1−→ a1

gi(x)
ai−→ x

f(x)
ai−→ x

, i ∈ N

28

where gi stands for applying the function symbol g to its argument i times. The
TSS is uniform, in bounded nondeterminism format, and has a strict stratifica-
tion given by

S(gi(p)) = 0
S(f(p)) = 1.

Notice that there exists no η such that the η-types are finitely inhabited. No
matter how one picks η, for every finite set η(f(x)) there would be an infinite
number of instances of the rule on the right that have the same η-type. Thus
the TSS is not bounded and the TSS does not meet the rule format for finite
branching. However, the associated LTS is finite branching because the only
possible transitions are g(a1)

a1−→ a1 and f(a1)
a1−→ a1.

Example 21. Let Σ consist of a constant c and a unary function symbol f , and
assume A = {a1, a2, . . .} with infinitely many actions. Consider the TSS

f(x)
a1−→ f(x)

f(x)
ai−→ y

f(x)
ai+1−→ y

, i ∈ N.

The TSS is uniform in both the sources of rules and the targets of their positive
premisses, and it is in bounded nondeterminism format. We let θ(f(x), a1) = ∅
and θ(f(x), ai+1) = {(f(x), ai)}) for each i ∈ N. The rule on the left has θ-type
〈f(x), a1, ∅〉. For each i ∈ N, the instantiation of the rule template on the right
has θ-type 〈f(x), ai+1, φi〉, where φi(f(x), ai) = {y}. The TSS is image bounded.
Notice that the TSS does not have a strict stratification and therefore it does
not meet the rule format for image finiteness. However, the associated LTS is
image finite, since c has no outgoing transitions and the image of each process
of the form f(p) for action ai (with i ∈ N) is f(p).

Another direction for future research is the study of algorithmic aspects of the
rule formats discussed in this paper. Indeed, whereas the conditions pertaining
to single rules, such as those imposed by the bounded nondeterminism format,
are purely syntactic and easy to check, those related to the various notions of
types have a global nature. It would be interesting to study ways to enforce those
global constraints and to develop algorithms for checking them over classes of
TSSs.

Nominal structural operational semantics (NoSOS) [8] enriches the SOS form-
alism by using some of the nominal techniques from [10,24,31] to deal with names
and binders within the SOS framework. We are currently investigating how to
adapt the results in this paper to NoSOS. The main challenges there are to treat
transition labels that may contain variables and the effect that the so-called
freshness assertions may have on the finiteness properties of interest. In NoSOS,
it is conventional to consider special administrative transitions for freshness con-
ditions, for substitution, and for α-conversion [8]. The transitions for freshness
conditions in isolation induce an initials-finite LTS. There are two kinds of substi-
tution, atom-for-atom and term-for-atom substitution, which taken in isolation
induce image-finite LTSs. The transitions for α-conversion taken in isolation

29

induce an initials-finite LTS. One of the problems in extending our results to
NoSOS is to abstract from these administrative transitions in order to focus on
the finiteness properties of the remaining transitions.

Acknowledgements We thank two anonymous referees for their careful reading
of our paper and their constructive comments.

References

1. Abramsky, S.: Domain Theory and the Logic of Observable Properties. Ph.D.
thesis, Department of Computer Science, Queen Mary College, University of Lon-
don (1987)

2. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, chap. 3, pp. 197–292.
Elsevier (2001)

3. Amtoft, T., Nielson, F., Nielson, H.R.: Type and Effect Systems. Imperial College
Press (1999)

4. Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment.
Journal of the ACM 33(4), 724–767 (1986)

5. Baeten, J.C.M., Vaandrager, F.W.: An algebra for process creation. Acta Inform-
atica 29(4), 303–334 (1992), http://dx.doi.org/10.1007/BF01178776

6. Bloom, B.: CHOCOLATE: Calculi of Higher Order COmmunication and LAmbda
TErms (preliminary report). In: Boehm, H.J., Lang, B., Yellin, D.M. (eds.) Con-
ference Record of the 21st ACM Symposium on Principles of Programming Lan-
guages, Portland, Oregon. pp. 339–347. ACM Press (1994)

7. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. Journal of the
ACM 42(1), 232–268 (1995)

8. Cimini, M., Mousavi, M.R., Reniers, M.A., Gabbay, M.J.: Nominal SOS. Electronic
Notes in Theoretical Computer Science 286, 103–116 (2012)

9. Fokkink, W., Vu, T.D.: Structural operational semantics and bounded non-
determinism. Acta Informatica 39(6-7), 501–516 (2003)

10. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: Longo, G. (ed.) Proceedings of the 14th Symposium on Logic in Computer
Science, Trento, Italy. pp. 214–224. IEEE Computer Society Press (1999)

11. van Gelder, A., Ross, K.A., Schilpf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–662 (1991)

12. van Glabbeek, R.J.: Bounded nondeterminism and the approximation induction
principle in process algebra. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,
M. (eds.) Proceedings of the 4th Annual Symposium on Theoretical Aspects of
Computer Science, Passau, Germany. Lecture Notes in Computer Science, vol.
247, pp. 336–347. Springer (1987)

13. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation
as a congruence. Information and Computation 100(2), 202–260 (1992)

14. Groote, J.F.: Transition system specifications with negative premises. Theoretical
Computer Science 118(2), 263–299 (1993)

15. Heyting, A. (ed.): Constructivity in Mathematics. North-Holland Publishing Com-
pany (1959)

16. Keller, R.M.: Formal verification of parallel programs. Communications of the
ACM 19(7), 371–384 (1976)

30

http://dx.doi.org/10.1007/BF01178776

17. Klusener, A.S.: Models and Axioms for a Fragment of Real Time Process Algebra.
Ph.D. thesis, Department of Mathematics and Computing Science, Technical Uni-
versity of Eindhoven (1993)

18. Lévy, A.: A hierarchy of formulas in set theory. Memoirs of the American Math-
ematical Society 57, 76 (1965)

19. Martin-Löf, P.: Intuitionistic Type Theory. Studies in Proof Theory: Lecture Notes,
Bibliopolis, Napoli (1984)

20. Milner, R.: Communication and Concurrency. PHI Series in computer science,
Prentice Hall (1989)

21. Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20
years after. Theoretical Computer Science 373(3), 238–272 (2007)

22. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2005)

23. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Springer
(2007)

24. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science, Cam-
bridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press
(2013)

25. Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, Department of Computer Science, Aarhus University, Denmark (1981)

26. Plotkin, G.D.: An operational semantics for CSP. In: Formal Description of
Programming Concepts, II (Garmisch-Partenkirchen, 1982), pp. 199–225. North-
Holland, Amsterdam (1983)

27. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

28. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)

29. Sangiorgi, D., Walker, D.: The pi-calculus: A Theory of Mobile Processes. Cam-
bridge Universtity Press (2001)

30. de Simone, R.: Higher-level synchronising devices in Meije–SCCS. Theoretical
Computer Science 37(3), 245–267 (1985)

31. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoretical Computer
Science 323(1-3), 473–497 (2004)

32. Vaandrager, F.W.: Expressiveness results for process algebras. In: de Bakker, J.W.,
de Roever, W.P., Rozenberg, G. (eds.) Proceedings of the REX Workshop on Se-
mantics: Foundations and Applications, Beekbergen, The Netherlands. Lecture
Notes in Computer Science, vol. 666, pp. 609–638. Springer (1993)

31

	Rule formats for bounded nondeterminism in structural operational semantics

